Exercise 39

For the following exercises, solve the equations over the complex numbers.

$$
2 x^{2}+2 x+5=0
$$

Solution

Factor the coefficient of x^{2}.

$$
2\left(x^{2}+x+\frac{5}{2}\right)=0
$$

The two terms with x, x^{2} and x, cannot be combined, so it's necessary to complete the square to solve for x. Recall the following algebraic identity.

$$
(x+B)^{2}=x^{2}+2 x B+B^{2}
$$

Notice that $2 B=1$, which means $B=\frac{1}{2}$ and $B^{2}=\frac{1}{4}$. Add and subtract $\frac{1}{4}$ within the parentheses on the left side and apply the identity.

$$
\begin{gathered}
2\left[\left(x^{2}+x+\frac{1}{4}\right)+\frac{5}{2}-\frac{1}{4}\right]=0 \\
2\left[\left(x+\frac{1}{2}\right)^{2}+\frac{9}{4}\right]=0 \\
2\left(x+\frac{1}{2}\right)^{2}+\frac{9}{2}=0
\end{gathered}
$$

Now that x appears in only one place, it can be solved for. Subtract $9 / 2$ from both sides.

$$
2\left(x+\frac{1}{2}\right)^{2}=-\frac{9}{2}
$$

Divide both sides by 2 .

$$
\left(x+\frac{1}{2}\right)^{2}=-\frac{9}{4}
$$

Take the square root of both sides.

$$
\begin{aligned}
\sqrt{\left(x+\frac{1}{2}\right)^{2}} & =\sqrt{-\frac{9}{4}} \\
& =\sqrt{\frac{9}{4}(-1)} \\
& =\sqrt{\frac{9}{4}} \sqrt{-1} \\
& =\frac{3}{2} i
\end{aligned}
$$

Since there's an even power under an even root, and the result is to an odd power, an absolute value sign is needed around $x+\frac{1}{2}$.

$$
\left|x+\frac{1}{2}\right|=\frac{3}{2} i
$$

Remove the absolute value sign by placing \pm on the right side.

$$
x+\frac{1}{2}= \pm \frac{3}{2} i
$$

Subtract $1 / 2$ from both sides.

$$
x=-\frac{1}{2} \pm \frac{3}{2} i
$$

Therefore,

$$
x=\left\{-\frac{1}{2}-\frac{3}{2} i,-\frac{1}{2}+\frac{3}{2} i\right\} .
$$

